Numerical resolution of some BVP using Bernstein polynomials
نویسنده
چکیده
In this work we present a method, based on the use of Bernstein polynomials, for the numerical resolution of some boundary values problems. The computations have not need of particular approximations of derivatives, such as finite differences, or particular techniques, such as finite elements. Also, the method doesn’t require the use of matrices, as in resolution of linear algebraic systems, nor the use of like-Newton algorithms, as in resolution of non linear sets of equations. An initial equation is resolved only once, then the method is based on iterated evaluations of appropriate polynomials. 1 Basic concepts Let Bn,i the i-th n-degree Bernstein polynomial (see [1]): Bn,i(t) = ( n i ) t (1− t), t ∈ [0, 1] (1) Let Pi = (pi, qi) ∈ R , with 0 ≤ i ≤ n. Then we can consider, from [0, 1] to R, the Bézier curve (see [2]) spawned by the array of points (Pi)0≤i≤n:
منابع مشابه
Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملA numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials
In this work, the nonlinear boundary value problem in electrohydrodynamics flow of a fluid in an ion-drag configuration in a circular cylindrical conduit is studied numerically. An effective collocation method, which is based on orthonormal Bernstein polynomials is employed to simulate the solution of this model. Some properties of orthonormal Bernstein polynomials are introduced and utilized t...
متن کاملThe Numerical Solution of Some Optimal Control Systems with Constant and Pantograph Delays via Bernstein Polynomials
In this paper, we present a numerical method based on Bernstein polynomials to solve optimal control systems with constant and pantograph delays. Constant or pantograph delays may appear in state-control or both. We derive delay operational matrix and pantograph operational matrix for Bernstein polynomials then, these are utilized to reduce the solution of optimal control with constant...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0510051 شماره
صفحات -
تاریخ انتشار 2005